303 research outputs found

    Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems.

    Get PDF
    Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles. Damage to DNA can include DNA strand breaks, point mutations due to DNA adducts, as well as alterations in methylation patterns leading to activation of oncogenes or inactivation of tumor suppressors. There are a number of significant long-term consequences associated with chronic oxidative stress, most notably cancer. Infiltrating immune cells and stromal components of tissue including fibroblasts contribute to dynamic changes occurring in tissue related to disease development. Immune cells can potentiate oxidative stress, and fibroblasts have the capacity to contribute to advanced growth and proliferation of the epithelium and any resultant cancers. Disease models for GERD, BE, GVHD, and ulcerative colitis based on three-dimensional human cell and tissue culture systems that recapitulate in vivo growth and differentiation in inflammatory-associated microphysiological environments would enhance our understanding of disease progression and improve our ability to test for disease-prevention strategies. The development of physiologically relevant, human cell-based culture systems is therefore a major focus of our research. These novel models will be of enormous value, allowing us to test hypotheses and advance our understanding of these disorders, and will have a translational impact allowing us to more rapidly develop therapeutic and chemopreventive agents. In summary, this work to develop advanced human cell-based models of inflammatory conditions will greatly improve our ability to study, prevent, and treat GERD, BE, GVHD, and inflammatory bowel disease. The work will also foster the development of novel therapeutic and preventive strategies that will improve patient care for these important clinical conditions

    Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2

    Get PDF
    Let-7 miRNAs comprise one of the largest and most highly expressed family of miRNAs among vertebrates, and is critical for promoting differentiation, regulating metabolism, inhibiting cellular proliferation, and repressing carcinogenesis in a variety of tissues. The large size of the Let-7 family of miRNAs has complicated the development of mutant animal models. Here we describe the comprehensive repression of all Let-7 miRNAs in the intestinal epithelium via low-level tissue-specific expression of the Lin28b RNA-binding protein and a conditional knockout of the MirLet7c-2/Mirlet7b locus. This ablation of Let-7 triggers the development of intestinal adenocarcinomas concomitant with reduced survival. Analysis of both mouse and human intestinal cancer specimens reveals that stem cell markers were significantly associated with loss of Let-7 miRNA expression, and that a number of Let-7 targets were elevated, including Hmga1 and Hmga2. Functional studies in 3-D enteroids revealed that Hmga2 is necessary and sufficient to mediate many characteristics of Let-7 depletion, namely accelerating cell cycle progression and enhancing a stem cell phenotype. In addition, inactivation of a single Hmga2 allele in the mouse intestine epithelium significantly represses tumorigenesis driven by Lin28b. In aggregate, we conclude that Let-7 depletion drives a stem cell phenotype and the development of intestinal cancer, primarily via Hmga2

    Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2

    Get PDF
    Let-7 miRNAs comprise one of the largest and most highly expressed family of miRNAs among vertebrates, and is critical for promoting differentiation, regulating metabolism, inhibiting cellular proliferation, and repressing carcinogenesis in a variety of tissues. The large size of the Let-7 family of miRNAs has complicated the development of mutant animal models. Here we describe the comprehensive repression of all Let-7 miRNAs in the intestinal epithelium via low-level tissue-specific expression of the Lin28b RNA-binding protein and a conditional knockout of the MirLet7c-2/Mirlet7b locus. This ablation of Let-7 triggers the development of intestinal adenocarcinomas concomitant with reduced survival. Analysis of both mouse and human intestinal cancer specimens reveals that stem cell markers were significantly associated with loss of Let-7 miRNA expression, and that a number of Let-7 targets were elevated, including Hmga1 and Hmga2. Functional studies in 3-D enteroids revealed that Hmga2 is necessary and sufficient to mediate many characteristics of Let-7 depletion, namely accelerating cell cycle progression and enhancing a stem cell phenotype. In addition, inactivation of a single Hmga2 allele in the mouse intestine epithelium significantly represses tumorigenesis driven by Lin28b. In aggregate, we conclude that Let-7 depletion drives a stem cell phenotype and the development of intestinal cancer, primarily via Hmga2

    Cdx1 and c-Myc Foster the Initiation of Transdifferentiation of the Normal Esophageal Squamous Epithelium toward Barrett's Esophagus

    Get PDF
    Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD). Despite this well-defined epidemiologic association between acid reflux and Barrett's esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined.To begin to identify the genetic changes responsible for transdifferentiaiton in Barrett's esophagus, we performed a microarray analysis of normal esophageal, Barrett's esophagus and small intestinal biopsy specimens to identify candidate signaling pathways and transcription factors that may be involved. Through this screen we identified the Cdx1 homeodomain transcription factor and the c-myc pathway as possible candidates. Cdx1 and c-myc were then tested for their ability to induce transdifferentiation in immortalized human esophageal keratinocytes using organotypic culturing methods. Analyses of these cultures reveal that c-myc and cdx1 cooperate to induce mucin production and changes in keratin expression that are observed in the epithelium of Barrett's esophagus.These data demonstrate the ability of Cdx1 and c-myc to initiate the earliest stages of transdifferentiation of esophageal keratinocytes toward a cell fate characteristic of Barrett's esophagus

    Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma

    Dexamethasone Treatment Induces the Reprogramming of Pancreatic Acinar Cells to Hepatocytes and Ductal Cells

    Get PDF
    The pancreatic exocrine cell line AR42J-B13 can be reprogrammed to hepatocytes following treatment with dexamethasone. The question arises whether dexamethasone also has the capacity to induce ductal cells as well as hepatocytes.AR42J-B13 cells were treated with and without dexamethasone and analyzed for the expression of pancreatic exocrine, hepatocyte and ductal markers. Addition of dexamethasone inhibited pancreatic amylase expression, induced expression of the hepatocyte marker transferrin as well as markers typical of ductal cells: cytokeratin 7 and 19 and the lectin peanut agglutinin. However, the number of ductal cells was low compared to hepatocytes. The proportion of ductal cells was enhanced by culture with dexamethasone and epidermal growth factor (EGF). We established several features of the mechanism underlying the transdifferentiation of pancreatic exocrine cells to ductal cells. Using a CK19 promoter reporter, we show that a proportion of the ductal cells arise from differentiated pancreatic exocrine-like cells. We also examined whether C/EBPβ (a transcription factor important in the conversion of pancreatic cells to hepatocytes) could alter the conversion from acinar cells to a ductal phenotype. Overexpression of an activated form of C/EBPβ in dexamethasone/EGF-treated cells provoked the expression of hepatocyte markers and inhibited the expression of ductal markers. Conversely, ectopic expression of a dominant-negative form of C/EBPβ, liver inhibitory protein, inhibited hepatocyte formation in dexamethasone-treated cultures and enhanced the ductal phenotype.These results indicate that hepatocytes and ductal cells may be induced from pancreatic exocrine AR42J-B13 cells following treatment with dexamethasone. The conversion from pancreatic to hepatocyte or ductal cells is dependent upon the expression of C/EBPβ

    Identification of prognostic phenotypes of esophageal adenocarcinoma in two independent cohorts.

    Get PDF
    BACKGROUND & AIMS: Most patients with esophageal adenocarcinoma (EAC) present de novo. Although this may be due to inadequate screening strategies, the precise reason for this observation is not clear.. We compared survival of patients with prevalent EAC with and without synchronous BE/intestinal metaplasia of the esophagus (IM) at the time of EAC diagnosis. METHODS: Clinical data were studied using Cox Proportional Hazards regression to evaluate the effect of synchronous BE/IM on EAC survival independent of age, sex, TNM stage and tumor location. Two cohorts from the Mayo Clinic and a U.K. multicenter prospective cohort were included. RESULTS: The Mayo cohort had 411 EAC patients with 49.3% with BE/IM demonstrating a survival benefit as compared to those without (hazard ratio (HR), 0.44; 95% CI: 0.34 - 0.57, P<0.001). In a multivariable analysis BE/IM was associated with better survival independent of age, sex, stage and tumor location and length (adjusted HR: 0.66, 95% CI: 0.5-0.88, P=0.005). The UK cohort contained 1417 patients, 45% with BE/IM demonstrating a survival benefit as compared with non-BE/IM patients (HR 0.59, 95% CI: 0.5-0.69, P<0.001) with continued significance in multivariable analysis that included age, sex, stage, and tumor location (adjusted HR 0.77, 95% CI: 0.64-0.93, P=0.006). CONCLUSION: Two types of esophageal adenocarcinoma can be characterized based on the presence or absence of Barrett's epithelium. These findings have implications for understanding the etiology of EAC and determining prognosis as well as for development of optimal clinical strategies to identify patients at risk

    K-ras Mutation Targeted to Gastric Tissue Progenitor Cells Results in Chronic Inflammation, an Altered Microenvironment, and Progression to Intraepithelial

    Get PDF
    Chronic infectious diseases, such as Helicobacter pylori infection, can promote cancer in a large part through induction of chronic inflammation. Oncogenic K-ras mutation in epithelial cells activates inflammatory pathways, which could compensate for a lack of infectious stimulus. Gastric histopathology and putative progenitor markers [doublecortin and calcium/calmodulin-dependent protein kinase-like 1 (Dcamkl1) and keratin 19 (K19)] in K19-K-ras-V12 (K19-kras) transgenic mice were assessed at 3, 6, 12, and 18 months of age, in comparison with Helicobacter felis–infected wild-type littermates. Inflammation was evaluated by reverse transcription–PCR of proinflammatory cytokines, and K19-kras mice were transplanted with green fluorescent protein (GFP)–labeled bone marrow. Both H. felis infection and K-ras mutation induced upregulation of proinflammatory cytokines, expansion of Dcamkl1+ cells, and progression to oxyntic atrophy, metaplasia, hyperplasia, and high-grade dysplasia. K19-kras transgenic mice uniquely displayed mucous metaplasia as early as 3 months and progressed to high-grade dysplasia and invasive intramucosal carcinoma by 20 months. In bone marrow–transplanted K19-kras mice that progressed to dysplasia, a large proportion of stromal cells were GFP+ and bone marrow–derived, but only rare GFP+ epithelial cells were observed. GFP+ bone marrow–derived cells included leukocytes and CD45− stromal cells that expressed vimentin or α smooth muscle actin and were often found surrounding clusters of Dcamkl1+ cells at the base of gastric glands. In conclusion, the expression of mutant K-ras in K19+ gastric epithelial cells can induce chronic inflammation and promote the development of dysplasia.National Institutes of Health (U.S.) (Grant NIH 5R01 CA120979-02)National Institutes of Health (U.S.) (Grant R01 DK060694)National Institutes of Health (U.S.) (Grant U01 CA143056)National Institutes of Health (U.S.) (Grant P30 DK050306)Uehara Memorial Foundatio

    Krt19\u3csup\u3e+\u3c/sup\u3e/Lgr5\u3csup\u3e-\u3c/sup\u3e Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine

    Get PDF
    Epithelium of the colon and intestine are renewed every 3 days. In the intestine there are at least two principal stem cell pools. The first contains rapid cycling crypt-based columnar (CBC) Lgr5+ cells, and the second is composed of slower cycling Bmi1-expressing cells at the +4 position above the crypt base. In the colon, however, the identification of Lgr5- stem cell pools has proven more challenging. Here, we demonstrate that the intermediate filament keratin-19 (Krt19) marks long-lived, radiation-resistant cells above the crypt base that generate Lgr5+ CBCs in the colon and intestine. In colorectal cancer models, Krt19+ cancer-initiating cells are also radioresistant, while Lgr5+ stem cells are radiosensitive. Moreover, Lgr5+ stem cells are dispensable in both the normal and neoplastic colonic epithelium, as ablation of Lgr5+ stem cells results in their regeneration from Krt19-expressing cells. Thus, Krt19+ stem cells are a discrete target relevant for cancer therapy
    • …
    corecore